یک آرایشگر تمام مردهایی را که خودشان را اصلاح نمیکنند، اصلاح میکند. آیا او صورت خود را اصلاح میکند؟ ریاضی توضیحی برای این تناقض دارد.
گاهی اوقات حس درونیتان شما را گمراه میکند؛ بهویژه در ریاضیات ممکن است مرتب با نتایجی روبهرو شوید که به نظر غیرممکن میرسند. برای مثال، بینهایت همیشه با بینهایت برابری نمیکند و حداقل از یک دیدگاه ریاضی مشخص، لاکپشتها ممکن است از ورزشکاران انسانی سبقت بگیرند.
سناریوهای زیادی وجود دارد که در نگاه اول یا نگاه دوم و سوم متناقض به نظر میرسند. این تناقضها را میتوان توجیه کرد، زیرا نه خطا، بلکه یادآوری این نکته هستند که نباید در ریاضیات بیشازاندازه بر شهود خود تکیه کنیم. در ادامه سه نمونه از عجیبترین تناقضهای ریاضی را معرفی میکنیم.
هتل هیلبرت
فرض کنید به شهری سفر کردهاید و فراموش کردید از قبل اتاقی را در هتل رزرو کنید. خوشبختانه با هتلی زیبا روبهرو میشوید که به افتخار دیوید هیلبرت، ریاضیدان مشهور، بدین نام خوانده میشود. به قسمت پذیرش میروید و مشاهده میکنید این هتل دارای تعداد بینهایت اتاق است: در واقع تعداد اتاقها متناظر با اعداد طبیعی ۱، ۲، ۳، ۴ و الی آخر هستند بدون اینکه پایانی مشخص داشته باشند.
بااینحال مسئول پذیرش به شما میگوید که اتاقهای هتل بهطور کامل رزرو شدهاند، اما شما بهراحتی قانع نمیشوید. میدانید که با رعایت یک ترفند، شما و بیشمار مهمان دیگر میتوانید در هتل اتاق بگیرید. به مسئول پذیرش پیشنهاد میدهید که هر مهمان به اتاقی با یک شماره بالاتر از محل اقامت فعلی خود برود. بهاینترتیب، شخصی در اتاق یک به اتاق ۲ و شخص از اتاق ۲ به اتاق ۳ میرود و این روند تا آخر ادامه پیدا میکند.
ازآنجاکه هتل هیلبرت دارای تعداد نامحدودی اتاق خالی است، حتی هنگامی که بهطور کامل رزرو باشد، هنوز اتاق برای میهمانهای بیشتر وجود دارد. البته این تنها برای یک نفر صدق نمیکند، بلکه میتوان تعداد زیادی از افراد را در این هتل جای داد. در این صورت مهمانهای هتل نهتنها یک اتاق، بلکه باید چند اتاق جابهجا شوند.