Category: عمومی

نسبت طلایی (عدد فی)

نسبت طلایی
دنياي اعداد بسيار زيباست و شما مي توانيد در آن شگفتيهاي بسياري را بيابيد. در ميان اعداد برخي از آنها اهميت فوق العاده اي دارند، يکي از اين اعداد که سابقه آشنايي بشر با آن به هزاران سال پيش از ميلاد ميرسد عددي است بنام “نسبت طلايي” يا Golden Ratio.

پاره خطي را در نظر بگيريد و فرض کنيد که آنرا بگونه اي تقسيم کنيد که نسبت بزرگ به کوچک معادل نسبت کل پاره خط به قسمت بزرگ باشد. به شکل توجه کنيد. اگر اين معادله ساده يعني a2=a*b b2 را حل کنيم (کافي است بجاي b عدد يک قرار دهيم بعد a را بدست آوريم) به نسبتي معادل تقريبا” 1.61803399 يا 1.618 خواهيم رسيد. شايد باور نکنيد اما بسياري از طراحان و معماران بزرگ براي طراحي محصولات خود امروز از اين نسبت طلايي استفاده مي کنند. چرا که بنظر ميرسد ذهن انسان با اين نسبت انس دارد و راحت تر آنرا مي پذيرد. اين نسبت نه تنها توسط معماران و مهندسان براي طراحي استفاده مي شود بلکه در طبيعت نيز کاربردهاي بسياري دارد.

ادامه‌ی مطلب

مدل رياضي دانه هاي برف

مدل رياضي دانه هاي برف

امروزه دانه‌های سه‌بعدی برف می‌توانند با استفاده از برنامه‌ای -که توسط ریاضیدانان در دانشگاه « دیویس کالیفورنیا» (UC Davis) و دانشگاه «وسیکانسین- مادیسون» (Wisconsin- Madison) رشد پیدا کنند- در یک کامپیوتر ساخته می‌شوند.

به‌گزارش سایت دانشگاه «دیویس کالیفورنیا» (UCDavis)، «جانکو گراونر» (Janko Gravner) پرفسور ریاضیدان دانشگاه «دیویس کالیفورنیا» (UCDavis) می‌گوید: هیچ دو دانه‌ی برفی همانند هم نیستند اما ممکن است خیلی شبیه همدیگر باشند. این‌که چرا خیلی با هم فرق نمی‌کنند، یک معما است. مدلی که بتواند آن‌ها را پردازش کند، ممکن است بتواند بعضی از این سؤال‌ها را جواب بدهد. ادامه‌ی مطلب

روانشناسی با اشکال هندسی

 

آزمونی ساده: ساده ترین اشکال هندسی را به یاد بیاورید: مربع، مستطیل، مثلث، دایره، منحنی پس خیلی سریع و بدون اینکه زیاد به مغزتان فشار بیاورید، شکلی را انتخاب کنید که بیشتر از همه می پسندید. آزمونی روانشناسی پیش روی شماست، که با توجه انتخابتان به سرعت نشان می دهد که شما در زندگی چه جور آدمی هستید و احتمال موفقیتتان در چه مشاغلی بیشتر است.

ادامه‌ی مطلب

تعیین تمام جایگشت‌های یک مجموعه رقم در متلب

به دست آوردن همه جایگشت های (Permutation) (چیدمان های مختلف) یک مجموعه رقم، با دستور perms ، در متلب (MATLAB)

هنگامی که یک مجموعه رقم داشته باشیم و ترتیب قرارگیری آنها برای ما مهم باشد، آنگاه برای به دست آوردن تمامی حالت های ممکن برای ترتیب قرارگیری آن ارقام، می توانیم دستور perms در متلب (MATLAB) را به کار ببریم.

این مورد را به دست آوردن همه جایگشت های (Permutation) (چیدمان های مختلف) یک مجموعه رقم، می نامند.

به مثال زیر توجه کنید :

مثال:

clear all
close all
clc

A = [2 4 6]
B = perms(A)

سه خط اول کدها برای عدم تداخل برنامه فعلی با برنامه های قبلی اجرا شده در متلب (MATLAB) می باشد.

نتیجه :

A =     2     4     6

B =     6     4     2
          6     2     4
          4     6     2
          4     2     6
          2     4     6
          2     6     4